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Monolayer-protected clusters (MPCs), especially with sub-
nanometer-sized metal cores,1-6 provide us good opportunities to
study evolution of electronic, optical, and chemical properties as a
function of a core size as well as to develop novel building blocks
for various nanoscale devices. To attain these ends, preparation of
MPCs with well-defined compositions is of primary importance.
Although one can control the average core size of the MPCs
prepared by the conventional chemical route based on nucleation
of zerovalent metal atoms in the presence of thiols,7 such a method
inevitably produces a distribution in the core sizes due to statistical
fluctuations in the nucleation process. Thus, development of size-
selection and characterization techniques with atomic resolution1a,b,8

is indispensable in achieving this formidable task. Recently, Whetten
and co-workers fractionated gold clusters protected by monolayers
of glutathione (GSH) γ-Glu-Cys-Gly) by using polyacrylamide
gel electrophoresis (PAGE) and identified the most abundant species
as Au28(SG)16 by mass spectrometry.1a,b In the present study, we
extend mass spectrometric measurement to a wider range of PAGE-
separated Au:SG clusters, demonstrating isolation of magic-
numbered gold clusters: Au18(SG)11, Au21(SG)12, Au25(1(SG)14(1,
Au28(SG)16, Au32(SG)18, and Au39(SG)23. Optical measurements
illustrate that the electronic structures of these Au:SG clusters are
molecular-like and are heavily dependent on their compositions.

The Au:SG clusters were prepared by the Himeji group by
following the recipe reported previously.9 TEM observation of the
Au:SG clusters thus prepared revealed that their core sizes appear
to be∼1 nm (Supporting Information, Figure S1). The crude sample
of the Au:SG clusters was further fractionated into six components
by a high-resolution PAGE (Supporting Information, Figure S2).1a,b

These fractions are referred to as1-6 in order of their mobility
(Figure 1).

The chemical compositions of1-6 were investigated by using
an electrospray ionization (ESI) mass spectrometer constructed at
IMS (Supporting Information, Figure S3). Figure 2 displays the
negative-ion ESI mass spectra of1-6. Note that the extensive
fragmentation into low-mass ions such as (AuSG)4

2- and Au(SG)2-

reported previously1a,bis significantly suppressed under an optimized
condition for desolvation. Each spectrum is composed of a series
of multiply charged anions originated from deprotonation of the
carboxyl moieties of the GS ligands. The molecular weights
determined from the deconvoluted spectra (Figure 2) are well
reproduced by combinations of Au atoms, GS ligands, and Cl
atoms: clusters1, 2, 4, 5, and6 are formulated as Au18(SG)11Clx,
Au21(SG)12Clx, Au28(SG)16Clx, Au32(SG)18Clx, and Au39(SG)23Clx,

respectively.10 Fraction 3 is dominated by Au25(SG)14Clx but is
contaminated appreciably by Au24 and Au26 clusters. The Cl
constituents, originated from HAuCl4, the starting material for the
cluster preparation, will not be denoted explicitly hereafter for
simplicity. The most important finding is that a series of nearly
single-sized Aun(SG)m clusters is isolated by the PAGE method.

Preferential formation of the Aun(SG)m clusters withn ) 18,
21, 25, 28, 32, and 39 indicates that they are relatively stable as
compared with other-sized clusters. The most plausible explanation
for their marked stability is the intrinsic stability of the Au cores
arising from closing of geometrical and/or electronic shells. Indeed,
truncated octahedral fcc structure has been theoretically suggested
for the Au core of Au38(SCH3)24.11 However, sequential completion
of polyhedral shell structures does not explain the whole sequence
of the Au core sizes observed here. Moreover, other computational
studies suggest that the core structures of Au28(SCH3)16 and
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Figure 1. Appearance of gels containing fractionated clusters1-6.

Figure 2. Negative-ion ESI mass spectra of clusters1-6 (left). Mass peaks
marked by asterisks are due to impurities from adjacent fractions. The right
panels show the deconvoluted spectra. The red bars indicate the molecular
weights of Aun(SG)m clusters withn-mvalues designated on the envelopes.
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Au38(SCH3)24 are distorted considerably by thiolate passivation.12

An alternative to account for the core stability is the closing of
electronic shells with given numbers of 6s valence electrons (8,
18, 20, 34, and so on).13 The electronic shell model well explains,
for example, preferential formation of Au8 within a dendrimer14

and intensity distributions of the gas-phase Au cluster ions,15,16but
not the series of the core sizes of the Au:SG clusters. These
considerations lead us to conclude that the GS monolayers play a
crucial role in stabilizing the series of gold clusters. Because our
research project is at the initial stage, we can only propose plausible
roles of thiolate ligation in the formation of the particular-sized
clusters: (1) the thermodynamic stabilities of some of the isolated
Au:SG clusters may be explained in terms of an electron counting
scheme in which partial electron transfer at the Au-S interfaces11,17

is taken into account; (2) nucleation of the Au cores may be ki-
netically hindered each time the GS protecting shells are completed,
resulting in the formation of a series of metastable Au:SG clusters.
We note that lateral hydrogen bonding (sNH‚‚‚OdCs) may afford
the GS monolayer’s enhanced stability.

The optical absorption spectra of1-6 are summarized in Figure
3. There appear clear absorption onsets followed by humps in the
range of 1.5-2.5 eV. The lowest-energy absorption bands, colored
in green, are ascribed to optical transitions between quantized levels
associated mostly with the gold cores, since they are observed only
in the small clusters and evolve with the core sizes. This assignment
is in parallel with recent DFT results on Au13(SCH3)8

3+, a smaller
analogue of the systems studied here.18 The molecular-like proper-
ties of these small Au clusters1-6 also manifest themselves in the
photoluminescent (PL) behavior, as shown in Figure 3. Table 1
summarizes the PL properties of2-6. The PL quantum yields,φ,
are remarkably larger than that of the bulk gold (φ ) 10-10),
showing an enhanced contribution of the radiative process in the
decay of the photoexcited states for these small systems.1c,d,3b,4c,19

The relatively small Stokes shifts and the excitation profiles suggest
that the PL originates from vibrationally relaxed states of the first

electronically excited state. We must await theoretical studies for
detailed assignment of the optical and PL spectra reported here.

To summarize, we report herein mass spectrometric charac-
terization of electrophoretically fractionated Au:SG clusters.
The main contribution of the present work has been to isolation of
a series of magic-numbered clusters, Au18(SG)11, Au21(SG)12,
Au25(1(SG)14(1, Au28(SG)16, Au32(SG)18, and Au39(SG)23. The
results provide basic guidelines for further experimental and
theoretical studies on structures, stabilities, and optical properties
of small gold MPCs as well as for development of new cluster-
based materials.
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Note Added after ASAP.The abscissa units on the left side of
Figure 2 were incorrect in the version published 5/6/2004. The final
version published 5/7/2004 and the print version are correct.

Supporting Information Available: Experimental procedures and
TEM data (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
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Figure 3. Optical absorption (green), photoemission (red), and photo-
excitation (blue) spectra of aqueous solutions of1-6 (300 K).20 The PL
spectrum of1 could not be obtained probably due to the small yield.

Table 1. Spectroscopic Features of 1-6

fraction formula
Egap

(eV)a

Eemis

(eV)b

ESs

(eV)c φd

1 Au18(SG)11 1.8
2 Au21(SG)12 1.7 1.6 0.4 1× 10-3

3 Au25(1(SG)14(1 1.5 1.8 0.4 3× 10-3

4 Au28(SG)16 1.3 1.7 0.3 7× 10-4

5 Au32(SG)18 1.2 1.6 0.2 6× 10-4

6 Au39(SG)23 <1.2 1.6 0.1 4× 10-4

a Absorption onset.b Emission maximum.c Stokes shift.d PL quantum
yield.
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